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1.0 Introduction

The problem of constructing interpolation functions for sets of

scattered data in two independent variables has been treated in many papers.

The survey paper on approximations to multivariate functions by Schumaker [20]

contains extensive references. Other survey papers are by Barnhill [3)

and Sabin [191. The present author has surveyed and tested a number of

algorithms for solution of the problem [10], [11]. Conceptually the

problem is quite simple: Given points (xk,Yk,fk), k 1 1, ..., N, with

distinct (xk,yk), construct a function F(x,y) so that F(x,yk) - fk'

k - 1, ..., N. Generally one wants to have a smooth interpolant, F(x,y),

in the sense that low order partial derivatives are everywhere continuous.

This is complicated for large sets of data by the fact that the interpolant

(in a practical sense, to be computable) must be local, so that its value

at some point (x,y) depends only on (xkyk'fk) values for which (xkyk) is

"close" to (x,y). A general framework for a class of such methods is

given in (91, and we will discuss it briefly in Section 2.

While a large number of ideas have been proposed for solution of

the problem, a much smaller number of working computer programs are readily

available. These include: (1) a method based on finite element functions

defined over triangles, due to Akima [1], [23, a version of which is
*

available in the IMSL library under the name IQRSCV, (2) a program based

on a similar idea, due to Lawson [14), (3) two programs based on weighted

local approximations by quadratic functions, due to Franke and Nielson [12].

A program by Little [15], and another by Nielson [181, both based on finite

International Mathematical and Statistical Libraries, 7500 Bellaire Blvd.,
Houston, TX 77036.
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element functions defined over triangles, will probably be available

by press time. All of these programs have been tested by the author

[10], [111, and most perform adequately in a variety of cases; None of

them seems to have a clear edge over all the others, or to be entirely

satisfactory. For certain applications, each has its good points. The

choice of a method for most users will be based on subjective criteria

which vary from person to person and application to application. It is

not surprising this is the case in two variables since it is also the case

in one variable, although perhaps to a lesser extent.

The purpose of this paper is to document an alternative scheme which

performed comparably well in the previously mentioned tests. In this way

the computer program will be brought to the attention of potential users,

who may request it from the author. The method will supplement the current-

ly available codes in that it is based on a different approach. It is

anticipated that it will find application and approval in a variety of areas.

The theoretical background for the method is discussed in Section 2,

while details of the program are outlined in Section 3. Section 4 gives

information concerning usage of the program. Several examples are given

in Section 5, including perspective plots of some surfaces generated by the

program. Included is an example of how the variation of a parameter in

the method affects the surface. General guidelines for choice of this

parameter are given, even though the suggested value usually leads to

satisfactory results. A general discussion of the features of the method

is given, along with general guidance for use of the program.

2.0 Theoretical Background

The general idea encompassing this scheme and many others are given

in [9]. Consider that the points (xkykfk), k - 1, ..., N are given.

Briefly, local approximations to the data are constructed, and these are
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then blended together by using weighting functions which form a partition

2
of unity on R2 . We pause to give the necessary notation and definitions.

A set of functions, wi(xy), £ 1, ... , m is said to form a partition

of unity if each w(x,y) 0 and wi(x,y) 1 1. The wi will be calledi-i

weight functions. Let the support of wi be denoted by Si - closure {(x,y):

wi(x,y) # 01. Let 1, [k: (xk,Yk) 6 Interior (S,)). Now suppose that the

functions Qi(x,y), i 1, .... m, are defined on Si and have the property

that they interpolate the data whose (x,y) coordinates are in Interior (S,),

i.e., if k e Ii, then Qi(xkyk) - fk These functions 0 will be called
m

local approximations. We then consider the function F(x,y) L wi(x,y)Qi(x,y).
i-I

Its properties are summarized in the following.
m

Proposition. The function F(x,y) I w i(x,Y)Qi(x,y) has the following
i-l

properties:

(1) Interpolation; F(xkyk) - fk' k - 1, ..., N.

(2) Smoothness; F(x,y) is at least as smooth as the wi and Qi' e.g.,

if all of the functions w i, QiV i - 1, ..., m have continuous

first derivatives, so does F(x,y).

(3) Local dependence on the data; Let (x,y) be fixed, and let

J - fi: wi(x,y) 0 01, then F(x,y) depends only on the (Xk k,yk,fk)

points for which k a-( u I ) ifi: some O, J C JXy depends on
xy

(xlyi1 f)}. In particular, we have F(x,y) - T Wi(x,Y)Qi(x,v).
icJ

x,y

These properties are essentially observations, but form the basis for

construction of appropriate weight functions which will allow easy determin-

ation of the set JX9 . Our construction yields a set of at most four nonzero

terms in the sum defining F(x,y). This provides a considerably faster process

during the evaluation of the interpolant than was possible in the choices

previously considered [9].
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It has beer implied, but is not necessary for the proposition to

hold, that many of the weight functions, wi, have finite support. In order

for the local approximations Qi(xy) to actually be local, this will

likely be the case. Therefore we think of weight functions whose support,

S , contains relatively few (xkY k) points, and whose support is often

2local. In order for the interpolant to be defined on all of R , some sets

Si must not be finite, and typically would contain points (x,yk) on or

near the boundary of the convex hull of the set of points {(xk,Yk)}. With

this framework and ideas in mind, we are ready to discuss the specific

details of the algorithm.

3.0 Details of the Algorithm

3.1 Choice of Weight Functions

While the choice of weight functions was allowed to determine the

support regions in the discussion of the previous section, it is more

convenient to proceed from support regions to weight functions in the

actual application. The use of support regions which are rectangles have

specific advantages in terms of controlling the number of support regions in

which a particular point (x,y) lies, as well as simplifying determination

of those regions.

Let n and n be given positive integers, and let finite values ofx

X0 < x1 < x2 < < xn < X n+1 and Y0 < <y ( Y2 " < Yn < n +1 be
x x y y

given. For each i - 1, 2, ..., nx and j 1 1, 2, ..., n. let r, j

x i+1 X yj+l 1 "

32 3
Let R3(s) - I 3s + 2s , the Hermite cubic satisfying H3(0) - 1,

H((1) - H'(0) -FE() - 0. We then define piecewise cubics with continuous



first derivatives, which are nonzero only on two adjacent intervals, and

satisfy

vi(x) S ij i,J = 1, 2, ... nx

u (Yi ij - 1, n

In particular we take

I - < x 1

v l ( ) = 3 -, x I < x < x
x. \ 2  -  "1

0 x 2 X

0 x < xi

AccP'5'ion ror

Vi l(x) < - <. NTIS
(. )DTIC Ts

H3(-, xi  x < i+ Jutif'catiol__

x - x i . .. . . . . . . .
~~~~B y -. . .. . .. . .

S, x - xi+l Distrith-t.n
"~ Ava I lP. .7 £

for 1 2, ..., n - 1 DI:.t *p

oX<
0 , x< n -

x

v () 1-v n- (x) , X- < xn
nx X x x

x x n
x

The u (y) are dual. Then if we define

W i , j (x ,y )  = v i W ~u i ( Y )  , i = . ..n x  J -1 . . .. v '

. . .. ... . .. .. . ..... . .. . . . . .. . J i l . ...IT , • .. ..i



it is easily observed that W has support ri~. except for when i - 1 or n

or j I 1 or n , when the support extends to - in one or both variables. We
y

denote the support of WJ by R. .. Further, we note that the W form a
i,j ,ij

partition of unity on R

Since the xi and y valules give rise to a grid on the plane, we call

them grid values. The choice of grid values xi and y depend on the data.

They may be specified by the user, but the default option is for them to be

determined by the program. In the default mode the user specifies a parameter,

NPPR (for number of points per region), the suggested value being about 10.

The program will then determine the grid values so that the anticipated

number of (x.,yk) points in each rectangle Ri will be approximately NPPR.

For data which is not somewhat uniformly distributed the actual numbers may vary

considerably. However, for most situations we have encountered, the process

is quite adequate.

An equal number of grid values is taken in each direction, i.e., n - n

Because we want NPPR points per rectangle, each subrectangle (xi,x ) × (yjyj+l)

should have 1 NPPR points. Since nx - n, we want (n + -) - NPPR = N,

leading us to take n to be the nearest integer to (4N/NPPR) 1/2 - 1.

The grid values xi, are now chosen so that there are approximately equal

numbers of points from the values xk k = 1, ..., N in each interval

(xi , x i+l). Specifically, let xk denote the xk values arranged in non-

A A A

decreasing order. Consider the points (0,x ), (l,x2) .... (N-l, X), and

let g(t) be the piecewvise linear interpolant for them. Divide the interval

N-I
(0,N-1) into n + 1 subintervals of length A =-- . The values of xi are

x
determined by taking them to be the values of g at the endpoints of the

subintervals, i.e., xI. - g(i ), i - 0, 1, 2, .... n + 1. The yj are determined

in dual fashion. This process results in the grid values and hence the

rectangles, being symmetric if the (xkyk) points are symmetric. In addition,

the relative positions of grid values are unchanged by linear displacements

6



and stretching in each variable.

When chosen in the above fashion, the location of the lines is not

a local process in the sense that insertion of an additional point will

change the boundaries of all of the rectangles. While one could argue that

then the scheme is not local, we take the view that the idea of local

determination of the interpolant is most important in the evaluation phase.

The determination of parameters in the scheme (here, the xi and v.) may be

a global process. Of course, if the user specifies the grid values, he will

likely be using a global process to choose them.

3.2 Choice of Local Approximations

The only constraint on the local approximations is that they interpolate

the appropriate points, and that they have continuous first derivatives

(at least) to assure a smooth interpolant. In the previously mentioned tests

conducted by the author, a number of global interpolation schemes for scattered

data were considered. In principle, any of these might be used. The choice

here was made for two reasons, (1) the method scored very well in the tests,

and (2) the method has an elegant and well developed mathematical theory which

also has direct application to some engineering problems.

The local approximations used in this algorithm are the thin plate splines

first mentioned by Harder and Desmairis [13], with theoretical developments

by Duchon [4-71 and Meinguet [16], [171. It was first developed as the

solution to the problem of a thin plate which is forced to pass through

certain points (the interpolation points) by application of point loads. For

our purposes it is sufficient to know that the approximation is of the form

!2
Q(x,y) = 3 log dk + a bx + cy

keI

where I - {k: Q is to take on the value fk at (xkYk)', and d k (x - xk  4

(y - yk)  The coefficients Ak, and a, b, and c are determined 
by the linear

7



system of equations

A Ad- log de + a + bx + cv f. , I
kJl a k(xV) = (xiv i) f

keI

IA kxkO0
kEs I

I -kyk -0
kcl

The geometric effect of the last three equations is to suppress all terms

in the approximation which grow faster than linear as distance from the

interpolation points is increased. A linear system of order equal to the

number of interpolation points plus three must be solved. To be nonsingular

there must be at least three noncollinear points among the (x,yk , kyl.

The system is symmetric, but not positive definite. While an equation

solver designed for such systems could be used, we have found a general

purpose solver, the DECOMP/SOLVE subroutines of Forsythe, Malcolm, and Moler [31

has given more reliable results.

It is easily observed that the local interpolant has continuous derivatives

of all orders except at the data points, (xk,7k), where a logarithmic

singularity occurs in the second derivatives. The interpolant has linear

precision, that is, if the (xkyk, fk) points all lie on a linear function, the

interpolant will reproduce it.

While the thin plate spline is invariant with respect to scaling, trans-

lation, and rotation (not all of this is obvious), the condition number of

the coefficient matrix for the system of equations is dependent on scaling,

To minimize difficulties with that, and to remove the effect of scaling the

variables by different amounts, we transform each rectangle r . onto the unit

square (0,I], before the local approximation 0i'j is computed.

8



It remains to specify the orocess for deterrning the points (x, k' k

to be interpolated by the t--i pate spline local approximation. Experience

hi3 ;.own that it is advantageous to include more points than is necessary,

i.e., (xk,v,) which are outside cf Ri~. This tends to yield a better tians-

ition between local approximations than when only necessary points are included.

The set of (xk,y) points transformed into the rectangle R = [-.1125, 1.112512

by the transformation taking ri j onto [O,13 are included. Let

I. = -k - - , f l R?

x X V
i+l *i-l Yj+I -yj-I

This gives the basic set of interpolation points for the local approximation

Qi,j associated with the rectangle Rii . Under certain conditions there may

be fewer than the necessary three indices in 1 .  When this hapoens, the

set I. . is augmented by including as interpolation peints the necesary

number of closest points to the rectangle R. ( in the Z norm), after the

points (xk,yk ) have undergone the transformation to the unit square. The

minimum number of points per rectangle is a variable, MINPTS. This has been

set to 3, but may be increased if it seems desirable.

After the interpolation ooints for each local avproximation ?ave been

determined, the local thin plate splines, Q can be determined by

calculating the coefficients. This yields

Qij(xY) = Ai j. dk 2 log d,' +- a. - b, ,x' + c
Qi'j kLI. i,j kK I) I

where the primes denote coordinates and distance after the transformation of

ri, j to the unit square

3.3 Properties of the Interpolant

The overall interpolant is of the form

n n

F(x,y) -7 (Xv)C) (xV)
i-i j-i



and as noted previously, there are at most four nonzero terms in the sum.

Which terms are nonzero is easily determined. If x a x n , set i' - n
n X
x

Otherwise let i' be the smallest index so that x, 1+l > x. Determine j' in

dual fashion from y and the v.'s. Then, the four nonzero terms have indices-j

(i',j'),(i'l,J'), (i',j'+l), and (i'+l,j'+l). If V = 0 or V - nx, the

terms involving i' or i'+l, respectively, do not appear, and similarly if

j' = 0 or j' - ny. the terms involving j' or j'+l, resoectively, do not

appear.

In dition to the properties outlined in Section 2, certain other

properties hold. The approximation is invariant under translation and

stretching (independently in each variable). It has symmetry with respect

to planes parallel to coordinate planes whenever the data has that symmetry.

The approximation is not invariant under rotations, however, since the

rectangles depend on the individual coordinates of the data points.

The approximation has continuous first derivatives, and jump dis-

continuities in the second derivatives across grid lines, as well as

logarithmic singularities in the second derivatives at the data points.

Plots of the surfaces generally appear to be quite smooth, however. Since

the local approximations have linear precision, the overall approximation

also has linear precision, i.e., if the data lies on a linear function, the

interpolant is a linear function.

4.0 The Computer Program

The overall hierarchy of the subroutines is given in Diagram I, which

shows the communication links between them. No COMMON is used as array

sizes are problem dependent and thus specified by the user. le briefly

discuss them, mentioning important parameters.

10



USER PROGRAM

LOTPS

GRID LOCLIP CLOTPS EVLTPS

VSORTA f DECOMP
(IMSL) { SOLVE

Diagram 1.

Calling Program

This program is supplied by the user and must supply the (. k

points, plus two arrays of points xO., and yO. for the grid of points

(xOiyO.) at which the interpolant is to be evaluated. In addition, the

user must supply two workspace arrays, IWK and WK in which information

calculated during preprocessing (e.g., li'j' xi, Yj, and coefficients for

the local approximations), is stored, and an array FO for the returned

interpolant values.

The amount of storage required for the arrays IWK and WK is not

known a priori. The estimated space required is about 6N for IWK and

about 7N for WK. Table 1 gives exact results for several different sized

problems based on random (x,y) points. Oddly distributed point sets may

result in somewhat more storage being required. In any case, the precise

11



number of locations required is returned to the calling program from

Subroutine LOTPS, the only routine referenced by the user. If an in-

sufficient number are allowed, an error return occurs.

Under the usual option, the user specifies NPPR > 0, the suggested

value being 10. If the user wishes to specify the grid lines, he may

do so by setting NPPR - 0, and then giving grid line information in the

arrays IWK and WK, as explained in the argument description for Subroutine

LOTPS. Typically one should take x M min x, xn i max xk , and the dual
x

in y. This is not necessary, although all points to be interpolated should

lie in [x 0 , xn +1 [y0' Yn +1 ]. To prevent different scaling (internallv)
x y

in the two variables, a square grid covering the (xk,!k) points could be

specified.

Subroutine LOTPS

This subroutine provides the interface between the user's program and

the set of routines implementing the method. Generally, LOTPS sets up

storage areas in the arrays IWK and WK, determines parameters required by

other subroutines, and calls other subroutines to (1) generate the grid, if

necessary, (2) determine the interpolation points for the local approximations,

(3) compute coefficients for the local approximations, (4) evaluate the

interpolant at a grid of points.

Subroutine GRID

This subroutine selects values of xi and vj in accordance with the

discussion in Section 3.

Subroutine LOCLIP

This subroutine determines the interpolation points for each local

interpolant, in accordance with Section 3.

Subroutine CLOTS

This subroutine generates the system of equations for the coefficients

of the local approximations and calls an equation solver to obtain them.

12



Internally the routine has a maximum of 30 local interpolation points.

This can easily be altered by changing two statements, as noted in the

program listing.

Subroutine EVLTPS

This subroutine evaluates the interpolant on the grid of points specified

by the user. Use of a grid, when that is required, facilitates the process

of locating the rectangle in which a particular evaluation point is located.

The xOi and vO. values should be in increasing order for maximum efficiency.

Evaluation time for a grid of points should be nearly independent of N for

large N, which is borne out by the timing information in Table 2.

5.0 Examples and Observations

Example 1. This example shows a typical local approximation function and

is for the data in Table 1. This function is a "cardinal" function for the

first point, and as such shows the effect of a nonzero value at a single point
I

on the interpolant. The plotted surface, shown in Figure 1, is over [0,1.J'.

Example 2. This example is given to show a surface generated from 100

randomly generated points with the function value being obtained from an

explicitly given function. The surface was generated using NPPR - 10, has

rms error of about .3%, and is virtually indistinguishable from a plot of the

parent surface. It is shown in Figure 2.

Examples 3, 4, 5. These examples use the same set of 60 points lying
-1 19 )2

in the square 18 ' 18 ), and chosen by a pseudorandom number generator.

The function is explicitly given by f(x,y) .1 + sin 3(x+y) ad is
12(x+y) ,adi

shown in Figure 3. Figures 4, 5, and 6 show the interpolant over the square

[0,1] 2 for NPPR values of 6, 10, and 15.

From these examples we see that PPR - 10 works well, not too much

difference is observed when MPPR is increased, but NPPR - 6 gives a less

13



smooth appearing surface. The smaller NPPR is, the more localized the

surface becomes (although NPPR - . will probably be the least value

practicable, and some local interpolants will likely become planes due to

the minimum of three interpolation points being reached). In line with

this coment, very smooth surfaces with small gradients will probably be

amenable to larger NPPR, while surfaces with large gradients may be best

-- approximated by taking NPPR smaller, thus localizing the behavior.

Table 2 gives the results of a series of problems with various numbers

of points and values of NPPR. The data points were chosen by a pseudcrandom

1 19 2
number generator in the square [ - _ , 19 1 , and the approximation was

evaluated on a 33x33 grid (of 1089 points total) on [0,1]. We observe that

increasing NPPR increases execution time while decreasing the amount of

2
storage needed. Preprocessing time should be about proportional to N , but

apparently there is a strong linear component for small N. Preprocessing

time should also be about proportional to NPPR, although this is not readily

apparent. Evaluation time should be nearly independent of N for large N, and

proportional to NPPR, which is approximately shown.

The automatic grid selection process works well when the data is

fairly uniform in (x,y) and lies nearly in a square region. If the data is

very Irregular, or lies in an oblong rectangular area, it will probably be

useful to explore results with a user specified grid to obtain better coverage

by rectangles which are not too oblong. Limited experience has been

accumulated in these situations.

6.0 How to Obtain this Program

A copy of this program, written in Fortran, and including a sample

driver program, can be obtained from the author. To do so, send a (short)

1/2 inch tape to the author indicating the format desired.

14
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Yf

0.35 0.35 0.5
-0.05 0.25 0.0
0.10 -0.05 0.0
0.50 0.05 0.0
0.00 0.90 0.0
0.30 0.70 0
0.60 0.50 0.0
0.90 0.00 0.0
0.40 1.05 0.0
0.85 0.80 0.0
1.05 0.20 0.0
1.10 1.10 0.0

Table 1: Data for "Cardinal" function.
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Time Time
NPPR N n = n NWKU NIWKU (Preprocessing) (Evaluation)x y

6 60 5 334 273 4.2 1;.3
6 100 7 619 506 7.5 17.6
6 500 18 3596 2893 70.5 21.2
6 1000 25 7441 6140 201.5 21.3

10 60 4 284 243 5.3 18.0
10 100 5 488 427 9.9 26.4
10 500 13 3014 2649 73.3 29.8
10 1000 19 6565 5804 202.6 31.7

15 60 3 224 199 6.8 23.0
15 100 4 414 373 12.4 32.8
15 500 11 2856 2591 91.6 39.3
15 1000 15 5920 5439 258.5 40.6

Table 2: Storage/Times for Various Size Problems.

17



Figure 1: Cardina1 --X-tion Figure 2: Saddle Function
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Figure 3: Parent Function Figure 4: NPPR =6

Figure 5: NPPR -10 Figure 6: NPPR -15
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